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The high-temperature expansion of the partition function of an Ising model in zero magnetic
field is calculated through terms of T? for a fcc lattice and variable first-, second-, and third-
neighbor interactions (J;, Jy, and J3). Values of the transition temperature T, and of the first-,
second-, and third-neighbor correlation coefficients at T =T are given for J,/J; and J3/J; each

varying between 0 and 2.

I. INTRODUCTION

The usual method! of performing a high-temper-
ature expansion of the Ising model makes use of
the relation

e®? /*T = cosh(J/kT)[1 +g tanh(J/RT)] (g=+1) (1)

to obtain a series in powers of tanh(J/kT). We
have chosen to write the exponential series of the
Boltzmann factor and thereby get directly a power
series in J/RT. The high-temperature expansion
of the partition function is given through (1/kT)°
for a fcc lattice with variable first-, second-,
and third-neighbor interactions. Values of the
transition temperature and of the first-, second-,
and third-neighbor correlation coefficients are
calculated under the assumption that the specific
heat has the form?

C~(1-T,/T)Ve T-T; (2)

above the transition temperature T, .

In Sec. II we outline how the contributions may
be considered as a product of two terms—one being
independent of the lattice and interactions and the
other being a lattice sum depending on the lattice
and interactions. This has been known!® for some
time, but it is presented here since we have a
slightly different approach and interpretation.

The values of the transition temperature and the
correlation coefficients are presented in Sec. III.
The same calculations are performed for a ‘“gener-
alized” spherical model*® and the results are com-
pared with those of the Ising model in Sec. IV.

II. EXPANSION OF InZ

We wish to obtain a high-temperature expansion
of the partition function. Once this expansion has
been obtained, various properties may be deter-
mined, e.g., the energy, the specific heat, the
correlation coefficients for distances at which
there are interactions, and the transition temper-
ature (assuming that the high-temperature series
have assumed their asymptotic form for these
early coefficients). The approach is similar to
that of several other authors® with the special case

4

of zero magnetic field being considered in this
paper. However, the grouping of terms and their
characterization is slightly different in this paper
and a full description will be presented.
The partition function is given by
Z”:—%v— b exp(lﬁEJ;_;aro;> , (3)
2" o 2 43

where Z is the partition function per site in a col-
lection of N sites, the factor 1/2" has been in-
serted to yield Z=1 for no interactions, B=1/kT,
the sum J,.,; means N sums, the ith one of which
i8 Jg1.41, and yr,; means i and? are summed over
the lattice vectors independently of each other.
The high-temperature expansion is obtained by
writing

Z”:—}V f} [-ﬂ z (l ZJ;’U;U‘)n ] . (4
2 na0 nl onil 2 1.4 - !

The performance of the sum },.,; yields contribu-

tions only when each o3 occurs an even number of

times and in the end cancels the 1/2¥ factor in the

above equation. For a given value of n, a power

series in N will result. However, the quantity

that is needed is InZ, and it is easily shown that

InZ is obtained by taking the coefficient of N in

A , i.e.,

InZ=2 RB" , (5)
n=2
where R, is the coefficient of Nf" in Z¥.

It is well known!'? that the contributions may be
analyzed in terms of constructing graphs on the
lattice. With the factor Ji_j we associate a bond
connecting sites 1 and j on the lattice. A contribu-
ting term to R, may then be represented by a graph
in which the number of bonds is equal to » and each
vertex in the graph is joined by an even number of
bonds.

The graph itself may be described by means of 6-
function restrictions on the vectors that form the
graph. We will group contributions according to
their 8-function description (DFD). The contribu-
tion of a particular DFD may be considered as the
product of two factors: a coefficient and a lattice
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sum. The coefficient results mainly from the fact
that a particular DFD may be a special case of
other DFD’s and thus may have already been counted,
although incorrectly. Evaluation of the coefficient
requires compensating for this previous incorrect
inclusion. This may be done without knowledge of
the interactions or lattice type. The lattice sum
simply involves doing sums over the lattice vectors
with the summand being products of the Ji_j and
the appropriate 6-function restrictions. Evidently,
the lattice sum requires knowledge about the inter-
actions and the lattice type.

Consider the evaluation of the coefficient C,(DFD)
of a particular DFD occurring in R,. The first
step is to construct the graph it describes. The
coefficient is calculated according to the following
rules®:

(a) The selection of a direction for each vector
requires a factor of 2"°%/2"=2"%, where s is the

number of disjoint components in the original graph.

(The convention used here is that s=1 for a con-
nected graph.) At this point if s>1, i.e., the
original graph is not connected, then one must
construct the possibly several different ways of
connecting the various components. For each con-
struction, steps (b)-(d) listed below must be per-
formed. The reason the graph must be connected
is because only connected graphs make a contri-
bution of order N in zZ".

(b) A repetition factor (1/n!)(n!/g) enters, where
g is the number of symmetry operations that trans-
forms a graph into itself.

(c) There is a permutation factor p, where p is
the number of ways in which the graph may be
constructed once two points in the graph have been
connected.

(d) To each vertex joined by b (b even) bonds,
we associate a semi-invariant factor M. The
coefficient of the DFD is then given by

C,(DFD) = (a)xZ[(b)x (¢)x @)] , (6)

where (i) represents the number resulting from
step (i) above and the sum is performed over the
various ways of connecting the disjoint components
of the original graph.

The first factor in rule (a) results from selecting
a direction (two possibilities for each vector) for
the remaining vectors in a connected component
relative to one given vector. The factor of 2" in
the denominator results from removal of the 3"
occurring in the inner summand of Eq. (4).

The factor of 1/z! in rule (b) accounts for the
removal of 1/2! in Eq. (4). The factor of n!/g
takes into account the labeling of the vectors in
the graph to form the DFD with g occurring to
compensate for the identical labeling of certain
vectors or groups of vectors.

In rule (¢), the p factor results from the number

of different ways of constructing (ordering of the
vectors) the graphs having the same DFD.

The factor MJ in rule (d) compensates for the
incorrect contribution introduced by other DFD’s
of which this particular DFD is a special case.
The value of M] is the coefficient of x*!/(b - 1)!
in the expansion of tanhx as has been determined
previously by several authors.® This result is
derived in the Appendix by using an approach
based on the “overcounting” mentioned earlier.

The lattice sum L,(DFD) of a particular DFD
occurring in R, is given by

n
L,0FD)= D2+ Z[(H 7) soFD)], (0
f £, L\ =1
where 6(DFD) is the product of § functions that are
the DFD.

In summary, for a given value of » in Eq. (5),
the different DFD’s are listed, a step that is most
conveniently done by drawing the different graphs
and applying the DFD. The values of C,(DFD) and
L,(DFD), defined in Eqs. (6) and (7), are calcu-
lated for each DFD. The term R, is then given by

R,= 2, C,(DFD)L,(DFD), ®)
DFD

where Jppp iS a sum over the different DFD’s.
III. RESULTS FOR fcc LATTICE AND J,,/;,J;3,#0

The high-temperature expansion of InZ is ex-
pected to have the asymptotic form?

nZ~ %%z;, . ®)

Several of the quantities that are calculable directly
from InZ are expected to have the following asymp-
totic form in their high-temperature expansion:

b ag~ DY

i m+a)I578 ’ 1::1’2;3
10
C aaf..,D(B/Bc)" i=1.2.3 ( )
» BT m’ )

where a;= (a; crm) is the correlation coefficient
connecting ith neighbors, E =- 33;J;o; is the en-
ergy per site, and C is the specific heat. Of
course, the quantities D and a differ for each of
the functions.

Here, the R, is identical to the previously de-
fined R, only for InZ. For the other functions, a
redefinition follows from the operation on InZ that
is required to produce that particular function,
e.g.,

2 2lnz
zy 88Jy’°

82 InZ
C=kp? R

ag= i=1,2,3

where 2z, is the number of ith neighbors.
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The model considered is that of a fcc lattice
having first-, second-, and third-neighbor inter-
actions (Jy, J,, J3). Terms throughz=9 of R,
were calculated and expressed in terms of J,, J5,
and J;. The expansion is given in Table I. Val-
ues of T, and values of @, @&, and @z at T=T,
were calculated for ratios of J,/J, and J3/J, each
varying between 0 and 2. Although only ferromag-
netic couplings (J,; >0) have been considered, the
identical calculations could be performed for anti-
ferromagnetic couplings (J; <0) or mixed ferromag-
netic and antiferromagnetic couplings. The calcula-
tion of T, was doneby means of the ratio method in
which it has been assumed that the early terms of
the series have assumed the form given by Eq.

(10) for the various functions. (This assumption
is implied by any type of calculation that uses a
finite number of terms from an infinite series. )

The assumption is that one may write

R,p"= 'D(f{i)); (12)
or
R, _ D
(k)" @+alB.I&.)]" ° (13)

where b has the appropriate value given in Eq. (10)
and

J(&,)=12J, +6J,+24J, (14)

is the maximum value of the Fourier transform of
the {7,} for ferromagnetic coupling. To eliminate
the parameter D, one may write

RD, =J &) Ry /Ry =Bed kn) [0 +a + 1)/ (2 +a)]®.
(15)
One approach’ is to expand

[(+a+1)/(n+a)]*= 1+b/(n +a). (18)

The values RD,,n=1,2,..., 8 are calculated and
plotted versus 1/(n +a). The value of a is selected
such that the plotted values most nearly lie on a
straight line whose ratio of slope to intercept is b.
This is a difficult task and does not appear to be
well suited for the limited number of terms given.
Likewise, the method of Padé approximants’ is
inconclusive.

There is a method that is more straightforward
in which values of three consecutive R, (or two
consecutive RD,) are used. In this method,

B.J () is eliminated by writing

RDD,=RD,/RD, = (n+a+1)?/[(n+a)(n+a+2)]°.
a7
Values of a are determined from the above equa-
tion forn=5,6,7. Values of B,J(k,) are then cal-
culated for » =8 by use of Eq. (15). Of course,
the values of a obtained from Eq. (17) for the
various values of n differ, and the corresponding
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values of B,J(K,) resulting from Eq. (15)forn=8
differ. The accuracy in a final determined value
of B,J(K,) could be measured by the closeness of
the values of 8.J (k,) calculated by the method out-
lined above.

Calculations of B,J (k,) have been performed
using the expansions of InZ, @7, and 3¢a; /37T,
i=1,23, and C. We have found that the values
of B.J(k,) differ less for the expansion of @, than
for any of the other functions. It is expected that
near-neighbor correlation coefficients should as-
sume their asymptotic form more quickly than do
far-neighbor correlation coefficients. However,
it may be surprising that @, is singled out since it
does not diverge at T =T, while C and 30a;/37,
i=1,2,3, dodiverge. Nevertheless, our conclu-
sion is that @, is the most reliable of the functions
calculated, and the values of T, have been deter-
mined using the high-temperature expansion of
this function. The results are given in Table II.

For most values of J,/J, and J;3 /J;, the three
calculated values of 8,I (k,,) were within 0. 2% of
each other. There are exceptions in which the
agreement is not as good—most notably for J,/J,
and/or J,/J,=0. This might be expected since
for J,/J,=0 interactions between closer neighbors
(second) have been neglected while interactions
between the more distant neighbors (third) have
been included. For J;/J,= 0 and as J,/J, increases
in value, one has to contend with second neighbors

B, J (k)

1.08

1.04 1 | 1 | ] | !

FIG. 1. Graph of ﬁcJ(l: m) Vs JypJj for several repre-
sentative values of J3/J;. For each value of J3/J;, the
upper curve is that of the generalized spherical model
(Ref. 5) and the lower curve is that of the Ising model.
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TABLE L. Coefficient of J7#-?J4J§ for given #,p, and q. Listed in parentheses are the terms of (1/7)/, [J ®)]"d%k
[see Eq. (20)].
q/p 0 1 2 3 a/p 0 1 2 3 4 5
0 3 0 1.5 0 32.5 72 36 0 2.75
12) (0) (6) (540)  (576) (576) (0) (90)
n=2 1 0 0 1 216 288 144 0
) (0) (1728) (2304) (1152) 0)
2 6 n=4 2 450 360 90
(24) (4752) (2880) (1296)
3 432 144
(3456) (1152)
4 155
(2376)
0 8 12 0 0 0 160 448 432 152 0 0
(48) (72) 0) 0) (4320) (8640) (5760) (3600)  (0) )
1 24 24 0 1 1616 3328 2016 592 )
n=3 (144) (144) (0) (24 480) (41760) (24480) (10080) (0)
2 24 24 2 5392 7920 3024 448
(144) (144) n=5 (68160) (96 480) (34560) (8640)
3 8 3 8512 7936 1440
(48) (105 120) (96 480) (15 840)
4 6368 2912
(80 640) (46080)
5 1744
(23 040)
q/p 0 1 2 3 4 5 6
0 886.1333 3072 4080 2400 606 0 18.06667
(42 240) (95 040) (105 120) (48 960) (24 840) (0) (1860)
1 11952 32256 30720 12000 2496 0
(299 520) (645 120) (570 240) (224 640) (69 120) (0)
2 57516 116 832 80 460 19 680 2004
(1126 800) (1909 440) (1358 640) (336 960) (64 080)
n=6 3 135216 195 744 85632 10 560
(2 246 400) (3024 000) (1 434 240) (167 040)
4 168036 155 616 33024
(2818 800) (2436 480) (652 320)
5 105888 46 560
(1797120) (760 320)
6 27 208. 27
(573 336)
a/p 0 1 2 3 4 5 6 7
0 5389.867 22 280.53 36864 30 538.67 12672 2689.6 0 0
(403 200) (1149 120) (1411 200) (1068 480) (393120) (156 240) 0) 0)
1 891729.07 300147.2 384624 234010.7 66 336 10 275, 2 0
(3679 200) (9545760)  (10352160) (6340 320) (1864800) (493 920) (]
2 567723.2 1506 888 1453536 637 488 114480 9267.2
(16 455 600) (36776880) (32256 000) (15331 680) (2943360) (423 360)
—_ 3 1822029 3707003 2562096 721594.7 65136
(43167 600) (78039360) (52436 160) (16 934400) (1532160)
4 3284149 4813248 2140 896 290 421.3
(70 156 800) (97614720) (43424 640) (7499 520)
5 3366 295 3166899 682416
(70 560 000) (65671 200) (14253 120)
6 1833569 838529.1
(40068 000) (19 726 560)
7 410461.9

(9 525 600)
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TABLE 1. (Continued)
q/p 0 1 2 3
0 35198.06 167 948.8 332311.6 348848
(4038 300) (13 305 600) (20 049 120) (17 015 040)
1 689726, 4 2754141 4424995 3622464
(44150 400) (135072 000) (179 424 000) (131 927 040)
2 5402966 17722968 22556 268 13982528
(236 540 640) (631 370 880) (715982 400) (425 510 400)
3 22291 354 58 592784 57 225392 25499 840
(752451 840) (1709 164 800) (1567 641 600) (708 019 200)
n=8 4 53807 597 109071 360 76 968 672 22172128
(1557 365 040) (2849172 480) (1991727 360) (598 671 360)
5 78648 877 115624 790 52607 827 7389152
(2096 666 880) (2912555 520) (1 368783 360) (202 460 160)
6 68571740 65135472 14405128
(1812404160) (1679166 720) (407111 040)
7 32832909 15126746
(898 813 440) (412715 520)
8 6656199
(203 858 760)
q/p 4 5 6 7 8
0 206104 65625.6 31125.6 0 147.0798
(9918 720) (2983 680) (1028160) 0) (44730)
1 1593760 352262.4 44262.4 0
(61770 240) (14 676 480) (3 225 600) 0)
n=8 2 4448424 626 448 40134
(153 296 640) (23 869 440) (2913 120)
3 5236 448 368851.2
(172892160) (12902 400)
4 2202635
(76 623 120)
a/p 0 1 2 3
0 242065. 6 1303 961 3003053 3803612
(40 958 400) (156 038 400) (269136 000) (277 804 800)
1 5431762 25176021 48525626 50101 671
(527 325 120) (1859 820 480) (2896 871 040) (2614792 320)
2 50 555 463 197733 683 313155715 256 320 736
(3279 443 328) (10 336 588 416) (14 023 933 056) (10721 531 520)
3 254998 277 829156162 1052468376 663832583
(12390928 704) (33936791 616) (38 890 152 000) (24034 429 440)
4 783 446 673 2046 014 528 2005933 328 914954 848
n=9 (30973525 632) (71 535 744 000) (66 098 592 000) (30979 670 400)
5 1514536508 3091 146 524 2185408 876 646123 599
(52754 889 600) (98186 739 840) (68 565 450 240) (21 614 826 240)
6 1862086 458 2746 035 232 1268051 590 234863 551
(60861 669120) (85 691 571 840) (40015019 520) (6 431 846 400)
7 1412656071 1351065 280 303 854 400
(45750 519 360) (43159 919 040) (10 029 821 760)
8 602381 304 281161 541
(20 290 314 240) (9724942 080)
9 110764114
(3990 604 800)

(being vectors of a sc lattice) making a greater con-
tribution to the #» even terms than the n odd terms.
For comparison, the value of B.J(Kk,) obtained by
Domb and Dalton® in an analysis of the high-tem-
perature expansion of the susceptibility for J,=J,
and J3=0 is 1. 1601 compared to our value of 1.160,
and for J,=J,=J; it is 1. 079 compared to our value

of 1.067; the value obtained by Fisher and Sykes®
for J,=J3=0 is 1. 2252 compared to our value of
1. 223.

The values of 8.J(k,) have been plotted in Fig. 1
for several representative cases of the interac-
tions. The curve of J3/J,=1 and J,/J, increasing
shows B,J(k,,) increasing for larger values of
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TABLE 1. (Continued)
a/p 4 5 6 7 8 9
0 2867 616 1297 244 331507.2 48665.75 0 0
(181 440 000) (85 881 600) (22014 720) (6 441 120) ) (0)
1 29635128 10 125 596 1819098 188 262.7 0
(1459 745 280) (555932160) (110 496 960) (21 591 360) (0)
2 115 825 824 28 667 712 3301382 177837.1
n=9 (4837916 160) (1404 527 040) (184705 920) (18 869 760)
3 216 036736 34669 458 1987 360
(8 202 357 880) (1614513 600) (102392 640)
4 193415104 15079 556
(7052 451 840) (717 050 880)
5 66 681 504
(2434 199040)

J,/J,. The value of 8,J (k,) ultimately would have
to increase for this case since as J,/J, == the
structure becomes that of a sc lattice with first-
neighbor interactions.

The ratio T.(J;/J,)/T,(0) varies almost linearly
with J,/J,, where T,(x) is the transition tempera-
ture for a given value of x. This fact has been ob-
served by Dalton and Wood?® for the special case
of Jy=0 with 05J,/J;51. We have taken the values
of B, J(k,,) determined in this paper and have cal-
culated the ratios for the special case of J;=0.
The ratios agree with those of Dalton and Wood to
within a fraction of a percent.

The curve in Fig. 2 can be approximated by

%ﬂ =1l+md,/J,
Actually the curve is convex so that the effective
value of m decreases as J,/J; increases. For
example, in the range 05J,/J,<3, m=0. 62 and
in the range £ <J,/J;<2, m=~0.55. The variation
in m seems to be sufficiently small so that the
linear approximation of Eq. (18) is helpful.

We have also calculated ratios for 05J,/J;
=dJ3/Jy 2, i.e., J, and Jy increasing at the same
rate. We find with an adjustment of the scale of
T,(J5/J,)/T,(0) - 1 that the curve for this case lies
almost exactly on the curve drawn in Fig. 2 for
Jy=0and 05J,/J;52. The value of m in Eq. (18)
for J,=J3 is approximately a factor of 5.17 times
the value of m for Jg=0. The curve for Jg=1 and
02J,/J, <2 has similar properties with the ap-
propriate value of m being a factor of 0. 30 times
the value of m for Jg=0. Likewise, the curve for
Jdp=1and 05Jy/J, 22 (J;/J, plotted along the hori-
zontal axis) is similar to the curve in Fig. 2 with
the appropriate value of m being a factor of 2. 55
times the value of m for J3=0.

The values of 8.J(k,,) were then used to calcu-
late the values of a;, a, and agat T=T,. The
terms known for these functions were included in
their exact form and then the value of the remain-

(18)

ing terms in their infinite series was calculated
by using their asymptotic form. The values are
given in Table II. The uncertainty in the calculated
values of the correlation coefficiellts is estimated
to be 1%. The uncertainty in g, J(k,,) is compounded
in calculating Ehe correlation coefficients since
powers of B, J(k,) are involved. Also, an additional
parameter D in Eq. (10) must be determined.

The values of the correlation coefficients have
been plotted in Figs. 3-5 for the same cases of
interactions as in Fig. 1 for 8,J(k,). A particular

2.2 T T T T T T T
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-
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-
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0 172 | 3/2 2
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FIG. 2. Graph of the transition temperature versus

increasing second-neighbor interaction for the special
case of J;=0, where SM denotes the spherical model,
and IM the Ising model.
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correlation coefficient depends on the relationship
among the three interactions. Correlations be-
tween given neighbors may result not only from
interactions between those neighbors but also from
interactions between other neighbors. This is the
reason for the varying behavior of the aj.

IV. COMPARISON OF RESULTS OF THE ISING MODEL
AND GENERALIZED SPHERICAL MODEL

The spherical model? is obtained by replacing the
conditions o3=%1, (j=1,2, ..., N)by the one
condition

1 25 2
- £=1.
N ja o,
The transition temperature is obtained by evaluating

)\ -1

28, = lfdak (1_ J) ) (19)
vJ, Jk,)/

where J(K) is the Fourier transform of the inter-

actions, J(iz,,,) is the maximum value of J(k), and the

integration is over a unit cell y in the reciprocal
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space.

The integral is evaluated by expanding the func-
tion [1 -J(K)/J(Kk,)]"! and performing the integrals
of (1/7) [,[J(K)]"d%k for limited values of n. The
asymptotic form of this integral is determined to
complete the approximate evaluation of the series.!!

This integral may also be written as

1 - n
;f[J(k)]"d’k =22 E(( L J;,>5;1.{-2.-.-.;,,,o .
; .

N
(20)

Thus the integral is the lattice sum, defined in Eq.
(7) for the DFD 0z .;,.....5 0 This is a basic lattice
sum which is used to calculate the lattice sums of
other DFD’s. The evaluation of the integral in Eq.
(20) forn=2, 3,..., 9 is expressed in terms of J;,
J,, and J; in Table 1.

In the usual spherical model, the identification is

28, = ﬁcJ(Em) . (21)

A generalized spherical model® has been defined in
which the transition temperature is given by

TABLE II. Values of 8,J(K,,), @, @, and @gat T=T, (listed in that order) for various ratios of Jy/Jy and Jy/J;.

J3/Jy 0 3 1 3 3 1 2 2
0 1.223 1,207 1.196 1,180 1.167 1.160 1,151 1.147
0.2457 0.2350 0.2269 0.2125 0.1985 0.1880 0.1697 0.1554
0.1610 0.1609 0.1623 0.1647 0.1652 0.1674 0.1707 0.1737
0.1374 0.1324 0.1293 0.1234 0.1163 0.1116 0.1027 0.0953
é 1.156 1.148 1.142 1.135 1.129 1.127 1.125 1.124
0.1917 0.1860 0.1810 0.1734 0.1655 0.1598 0.1492 0.1394
0.1242 0.1264 0.1289 0.1346 0.1385 0.1434 0.1509 0.1562
0.1136 0.1108 0.1086 0.1058 0.1021 0.1000 0.0955 0.0905
z’; 1.124 1,119 1.114 1.110 1.108 1.107 1.108 1.109
0.1606 0.1571 0.1533 0.1486 0.1445 0.1407 0.1342 0.1277
0.1046 0.1075 0.1098 0.1161 0.1220 0.1271 0.1363 0.1431
0.1019 0.1002 0.0980 0.0963 0.0948 0.0932 0.0908 0.0875
% 1.095 1.091 1.087 1.085 1.085 1.085 1.087 1.090
0.1263 0.1241 0.1217 0.1196 0.1182 0.1164 0.1135 0.1108
0.0848 0.0872 0.0892 0.0954 0.1015 0.1067 0.1162 0.1243
0.0912 0.0897 0.0879 0.0871 0.0867 0.0860 0.0849 0.0830
% 1.081 1.078 1.075 1.073 1.073 1.074 1.076 1.079
0.1069 0.1056 0.1042 0.1029 0.1022 0.1018 0.1005 0.0993
0.0743 0.0765 0.0765 0.0839 0.0894 0.0947 0.1038 0.1118
0.0857 0.0847 0.0835 0.0827 0.0825 0.0825 0.0821 0.0817
1 1.074 1.072 1.069 1.067 1.066 1.067 1.069 1.072
0.0949 0.0943 0.0931 0.0922 0.0916 0.0916 0.0912 0.0910
0.0682 0.0705 0.0722 0.0769 0.0815 0.0864 0.0951 0.1028
0.0830 0.0823 0.0812 0.0804 0.0799 0.0801 0.0802 0.0804
’} 1.067 1,066 1.064 1.062 1.062 1.062 1,063 1.064
0.0805 0.0804 0.0799 0.0794 0.0796 0.0797 0.0799 0.0798
0.0613 0.0634 0.0650 0.0688 0.0730 0.0770 0.0845 0.0909
0.0801 0.0798 0.0791 0.0785 0.0785 0.0785 0.0787 0.0786
2 1.065 1.064 1.062 1.060 1.060 1.060 1.060 1.061
0.0727 0.0726 0.0721 0.0718 0.0722 0.0724 0.0726 0.0730
0.0580 0.0597 0.0609 0.0640 0.0677 0.713 0.0777 0.0838
0.0791 0.0788 0.0782 0.0776 0.0776 0.0777 0.0777 0.0780
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FIG. 3. Graph of oy vs J,/J; for several representa-
tive values of J3/J;. For each value of J3/J;, the upper
curve is that of the generalized spherical model (Ref.
5) and the lower curve is that of the Ising model.

sinhB,J(K,) = 2S, sinhl . (22)

The values of B,J(K,), @;, ¢ and a, are plotted
in Figs. 1, 3, 4, and 5, respectively, for several
cases of interactions.

An interesting observation from Fig. 1 is that the
generalized spherical model has a higher value of
B.J(K,,) than does the Ising model. The general
properties of B,J(K,) as a function of the ratios
J,/J, and J3 /J, are similar for the generalized
spherical model and Ising model. For the case of
J3/Jy=1 and J, /J; varying, both have the minimum
value of B,J(K,) occurring at the value of J,/J; ~3.

Observance of Fig. 2 shows that the ratio
T.(J5/J,)/T.(0) of the spherical model is very close
to that of the Ising model. The curves of the spher-
ical model for other cases (those mentioned in Sec.
III) are likewise very close to those of the Ising
model.

It is seen from Figs. 3-5 that the correlation
coefficients of the generalized spherical model and
Ising model have similar behavior as functions of
the ratios J,/J, and J;/J,.
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APPENDIX

The semi-invariant factor MJ enters because of
the correction that has to be made for overcounting,

1>

0.20 1 1 T T T T

0.08 »

Jy 7/,

FIG. 4. Graph of @, vs Jy/J; for several representa-
tive values of J3/J;. For each value of J3/J;, the upper
curve is that of the generalized spherical model (Ref. 5)
and the lower curve is that of the Ising model.

i.e., inclusion of specialized DFD’s in more gener-
al DFD’s. The derivation that follows has as its
basis an inspection of the degree (the number of
bonds) of a vertex and the subtraction of the incor-
rect contributions made by those terms whose ver-
tices if coalesced have collectively the degree of
this one vertex.

Consider a vertex of degree 2n. If the incorrect
contributions are compensated for, the vertex will
have a resultant weight of unity., The procedure is
to enumerate the different ways in which this one
vertex of degree 2n may be formed by joining to-
gether several vertices, each having an even de-

0.12
)
]

0.10

0.08

BT | ! | 1 | 1
[0} 172 | 3/2 2
JZ/JI

FIG. 5. Graph of a3 vs J,/J; for several representa-
tive values of Jy/J;. For each value of J3/J;, the upper
curve is that of the generalized spherical model (Ref. 5)
and the lower curve is that of the Ising model.
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gree. We associate the characteristic semi-invari-
ant factors with each combination of vertices. If
one combines the semi-invariant factors with the
number of ways that the single vertex may be re-
solved into the several vertices, and then performs
a sum over the various decompositions, one will
get the correct weight of unity. The equation reads

a ’ Zn s
1=Z[ Z; )( MO”'
=1 Myy Moy eeatmy zml» sz,'”’zm! lI=Il 2 t ’

(A1)
where j is the number of different vertices in the
decomposition and the prime on the second sum
means YJ., 2m,;=2n for the 2m, having possible

SECOND-, AND THIRD-... 937
values from 2 to 2.

The set of equations for n=1, 2,... will generate
the values of MY MS,... . But the semi-invariant
M$, is also the coefficient of x2"!/(2n - 1)! in the
expansion of tanhx. This identification follows from
writing the expansion of tanhx, integrating to pro-
duce 1n(coshx), and then taking the exponential to
produce coshx. The final step is to equate the coef-
ficient of x2" in the expansion of coshx and in the
expression resulting from the operations described
in the above statement. It will be seen that the re-
cursion relation obtained for the coefficient in the
expansion of tanhx is identical to the recursion re-
lation in Eq. (Al) of the semi-invariants.
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The interaction of the low-lying magnons and excitons with the E, optical phonon in antiferro-
magnetic CoF, is directly observed by measuring the magnetic-dipole intensity transferred
from magnetic excitations to the otherwise optically inactive E, lattice mode. The anomalous
behavior of the frequency, linewidth, and magnetic-dipole intensity of this phonon have been
measured as the temperature is raised from 4.2 °K through the Néel point (37.7 °K) to ~4.5Ty

(180 °K).

The frequency drops continuously with a break in slope at the Néel point, while the

linewidth narrows by more than a factor of 3 when the temperature passes through the Néel
point. A theory of the temperature dependence of the transferred intensity is derived which
distinguishes two contributions. The first is proportional to the sublattice magnetization and
vanishes in the paramagnetic state; the second is proportional to the square of the Boltzmann
factor for the exciton states and vanishes only at arbitrarily high temperature. By fitting the
experimental temperature dependence of the intensity to the theory, the local spin-lattice~in~
teraction parameters for the E, distortions can be determined.

I. INTRODUCTION

Unquenched orbital motion in the single-ion
ground state of Co® significantly alters the mag-

netic properties of the two-sublattice antiferro-
magnet CoF,. The magnetic structure! consists
of moments parallel and antiparallel to the tetra-
gonal axis of the rutile crystal structure and is the



